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Abstract

A meshfree multiscale method is presented for efficient analysis of elastoplastic solids. In the analysis of softening
elastoplastic solids, standard finite element methods or meshfree methods typically yield mesh-dependent results.
The reason for this well-known effect is the loss of ellipticity of the boundary value problem. In this work, the scale
decomposition is carried out based on a variational form of the problem. A coarse scale is designed to represent global
behavior and a fine scale to represent local behavior. A fine scale region is detected from the local failure analysis of an
acoustic tensor to indicate a region where deformation changes abruptly. Each scale variable is approximated using a
meshfree method. Meshfree approximation is well-suited for adaptivity. As a method of increasing the resolution, a
partition of unity based extrinsic enrichment is used. In particular, fine scale approximations are designed to appropri-
ately represent local behavior by using a localization angle. Moreover, the regularization effect through the convexifi-
cation of non-convex potential is embedded to represent fine scale behavior. Each scale problem is solved iteratively.
The proposed method is applied to shear band problems. In the results of analysis about pure shear and compression
problems, straight shear bands can be captured and mesh-insensitive results are obtained. Curved shear bands can also
be captured without mesh dependency in the analysis of indentation problem.
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1. Introduction

In the deformation analysis of strain-softening elastoplastic solids, the localization phenomenon arises.
Strain concentration occurs within a critical zone as a consequence of the bifurcation of the local constitu-
tive behavior of the material. Such critical zones, for example, shear bands, are observed in metals as well as
in geomaterials. Applications of standard finite element methods or meshfree methods to the simulation of
shear bands in strain-softening elastoplastic solids typically yield mesh-dependent post-critical results. It is
due to the loss of ellipticity of boundary value problem. This leads to ill posedness of the problem and lack
of objectivity.

To obtain objective results without mesh dependency, a plethora of research has been conducted includ-
ing regularization effects. Among topics of these studies are viscoplastic regularization, nonlocal regulari-
zation, gradient regularization and coupled stress regularization. Needleman (1988) proposed
regularization by introducing rate-dependency in the material. Bazant (1984) and Bazant and Lin (1988)
used non-local regularization by introducing the constitutive equations with a function of nonlocal vari-
ables. Gradient type regularization with the gradient-dependent softening plasticity theory was developed
by Zbib and Aifantis (1988), Muhlhaus and Aifantis (1991) and others. de Borst and Sluys (1991) used mi-
cro-polar Cosserat theories to introduce regularization effects. Miehe and Lambrecht (2003) proposed a
regularization method through the convexification of non-convex potential.

In another point of view, the strain localization phenomena involve a narrow region with a high dis-
placement gradient along the width of the band. A natural approximation method of displacement is sug-
gested by a smooth function representing the coarse scale behavior in the entire region added by a sharp
function representing the fine scale behavior in the localization region. This approach is one of the multi-
scale methods that analyzes a problem with different scales. In general, to accurately solve problems of this
sort, the domain must be discretized into very fine meshes to capture the local behavior, however, this pro-
cess is inefficient and very costly. For the efficient analysis of these problems, many attempts have been
undertaken. Many kinds of adaptive schemes are suggested by Zienkiewicz and Taylor (1989). In most
of the adaptive schemes, error estimation is required to detect large error regions. The decomposition of
these problems into coarse scales and fine scales is an efficient way to solve the problems. Direct decompo-
sition of the variational form of the governing equations is called the variational multiscale method, which
was proposed by Hughes (1995) and Hughes et al. (1998) and was applied to the Helmholtz equation
(Oberai and Pinsky, 1998), strain localization problem (Garikipati and Hughes, 1998, 2000), and eddy flow
problem (Hughes et al., 2001a,b). Zohdi et al. (1996) and Oden and Zohdi (1997) proposed a multiscale
method based on the homogenization scheme to analyze behavior of the heterogeneous material. They
made a coarse scale model using homogenization to determine the overall behavior and a fine scale model,
using a detailed model, to determine local behavior. They applied these methods to the analysis of heter-
ogeneous material and composite material (Oden et al., 1999). Liu and Chen (1995) and Liu et al. (1996)
used the low-pass filter property of meshfree shape function, and they detected large error region by using
that property and applied adaptive scheme. In the meshfree method, adaptivity is easy to implement be-
cause no elements are employed. Li and Liu (1999a,b) generalized moving least-squares approximation
and made a hierarchical partition of unity. They applied this scheme to multiscale problems such as shear
band analysis.

In this paper, a variational multiscale method is adopted to solve the elastoplastic deformation problem.
From the local failure analysis of the acoustic tensor, bifurcation regions are detected and used as fine scale
regions. Bifurcation direction is used to approximate fine scale to appropriately represent local behavior.
Each scale problem is solved iteratively, and, consequently, converged results are obtained. Iteration pro-
cedure is indispensable for the elastoplastic deformation analysis, so, this kind of solution procedure is ade-
quate for the elastoplastic deformation problem. As an approximation method, the moving least-squares
meshfree method is adopted. In this scheme, adaptivity can be efficiently applied. Coarse scale variables
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are approximated with the original moving least-squares shape functions, and fine scale variables are
approximated with the enriched shape function associated with partition of unity method. As numerical
examples, pure shear, compression and indentation problems are solved. These examples represent straight
and curved shear bands, respectively.

This paper is organized as follows. In the next section, various numerical formulations of elastoplastic
deformation problems are described. A regularization method which utilizes convexification is described in
Section 3, and multiscale formulation and numerical implementations are described in Section 4. Numerical
examples which show the validity of the proposed method are given in Section 5. A summary and some
concluding remarks are provided in the last section.
2. Formulation of the elastoplastic deformation problem

2.1. Weak form of the elastoplastic problem

The deformation of elastoplastic solids is governed by the equations of motion, boundary conditions and
constitutive relations. The governing equations are in non-linear form, so, we use the Newton method to
linearize these equations.

Let the index of the loading step be �n�, and the index of Newton iteration step be �i�. The i-th iteration
step during n-th loading step can be written as (n, i). The governing equations can be written as follows:
orðn;iþ1Þ
ij

oxi
þ qbðnþ1Þ

j ¼ 0 in V ; ð1Þ
where rij denotes the Cauchy stress tensor, q the mass density, bj the body force. Superscripts indicate con-
figuration of variables. Displacement and traction boundary conditions can be written as follows:
uðnþ1Þ
i ¼ gðnþ1Þ

i on Su; ð2Þ

rðnþ1Þ
ij ni ¼ tðnþ1Þ

j on St; ð3Þ
where gi and ti are given displacement and traction.
The stress at (n, i + 1) step can be represented as follows:
rðn;iþ1Þ
ij ¼ rðn;iÞ

ij þ Drðn;iþ1Þ
ij : ð4Þ
The weak form of the governing equations can be written as follows:
Z
V

owj

oxi
Drðn;iþ1Þ

ij dV ¼
Z
St

wjt
ðnþ1Þ
j dS �

Z
V

owj

oxi
rðn;iÞ
ij dV þ

Z
V
wjqb

ðnþ1Þ
j dV ; ð5Þ
where wj is the test function that has zero value on Su.
As a plasticity model, a von Mises-type model (J2 flow rule) is used in this work. A yield function of J2

flow rule is written as follows:
Uðr;�epÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
r0
ijr

0
ij

r
� rYð�epÞ; ð6Þ
where r0
ij denotes deviatoric stress and rY the yield stress. �ep indicates effective plastic strain, and its time

rate is defined as _�e
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3_epij _e

p
ij

q
.

Strain can be decomposed into elastic and plastic parts.
_eij ¼ _eeij þ _epij: ð7Þ
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Elastic strain and stress has the following relations:
_rij ¼ Eijkl _e
e
ij ¼ ðEs

ijkl þ Ed
ijklÞ_e

e
ij; ð8Þ
where Eijkl denotes elastic modulus tensor. Spherical and deviatoric parts are written as
Es
ijkl ¼ jdijdkl; ð9Þ

Ed
ijkl ¼ 2l½ðdikdjl þ dildjkÞ=2� ðdijdklÞ=3�; ð10Þ
jand l indicates the bulk modulus and shear modulus respectively.
From the associative flow rule, plastic strain can be written as
_epij ¼ _k
oU
orij

; ð11Þ
where k denotes plastic multiplier.
The linear hardening/softening rule is represented as follows:
rY ¼ Y 0 þ h�ep; ð12Þ

where Y0 denotes initial yield stress, h the coefficient of linear hardening/softening.

From the above elastoplastic constitutive relations, the increment of stress can be represented as follows:
Drðn;iþ1Þ
ij ¼ CijklDe

ðn;iþ1Þ
ij : ð13Þ
The explicit tensor form of Cijkl can be written as
C ¼ Es þ 1� 1

1þ h=3l
Utrial

nþ1

kdevðrtrial
nþ1Þk

� �
Ed � 2l

1þ h=3l
1� Utrial

nþ1

kdevðrtrial
nþ1Þk

� �
N trial

nþ1 � N trial
nþ1; ð14Þ
where superscript �trial� indicates the elastic-trial state and N trial
nþ1 ¼ devðrtrial

nþ1Þ=kdevðrtrial
nþ1Þk. Detailed deriva-

tions can be found in referring article (Simo and Hughes, 1998).
Finally, the weak form of the governing equations (5) can be rewritten as
Z

V

owj

oxi
CijklDe

ðn;iþ1Þ
kl dV ¼ �

Z
V

owj

oxi
rðn;iÞ
ij dV þ

Z
St

wjt
ðnþ1Þ
j dS þ

Z
V
wjqb

ðnþ1Þ
j dV : ð15Þ
The trial function space and test function space are defined as follows:
U ¼ fv j v 2 H 1ðV Þ; v ¼ Dgðnþ1Þ at Sug; Duðn;iþ1Þ 2 U ; ð16Þ

V ¼ fw j w 2 H 1ðV Þ;w ¼ 0 at Sug; w 2 V : ð17Þ
2.2. Incremental variational formulation of the elastoplastic problem

The elastoplastic problem stated in the above section can also be described in incremental variational
form. To do this, the concept of an incremental stress potential W is required. W is defined on the time
interval [tn, tn+1] and has the following property.
rðn;iþ1Þ ¼ oeW ðeðn;iþ1ÞÞ: ð18Þ

To satisfy the above equation, W has the following form for the standard dissipative material.
W ðeðn;iþ1ÞÞ ¼ inf
u

Z tnþ1

tn

½ _wþ /�dt ¼ inf
u

Z tnþ1

tn

½r : _e�dt: ð19Þ
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Here, u indicates internal variables, w = w(e,u) energy storage function, / ¼ /ð _uÞ dissipation function.
More detailed properties about standard dissipative material can be found in the referring article (Miehe,
2000).

The elastoplastic problem can be represented as the variational form of incremental potential energy
defined below. Z Z
Pðuðn;iþ1ÞÞ ¼
V
½W ðeðn;iþ1ÞÞ � uðn;iþ1Þ � bðnþ1Þ�dV �

St

uðn;iþ1Þ � tðnþ1ÞdS: ð20Þ
Displacement at (n, i + 1) is written as u(n,i+1) = u(n,i) + Du(n,i+1), and its variation is written as
duðn;iþ1Þ ¼ dDuðn;iþ1Þ: ð21Þ

Taking the variation of Eq. (20) leads to
dPðuðn;iþ1ÞÞ ¼
Z
V
½dW ðeðn;iþ1ÞÞ � dDuðn;iþ1Þ � bðnþ1Þ�dV �

Z
St

dDuðn;iþ1Þ � tðnþ1Þ dS ¼ 0: ð22Þ
The variation of incremental stress potential can be summarized as follows:
dW ðeðn;iþ1ÞÞ ¼ oeW ðeðn;iþ1ÞÞ : deðn;iþ1Þ ¼ rðn;iþ1Þ : dDeðn;iþ1Þ ¼ ðrðn;iÞ þ Drðn;iþ1ÞÞ : dDeðn;iþ1Þ

¼ ðrðn;iÞ þ C : Deðn;iþ1ÞÞ : dDeðn;iþ1Þ: ð23Þ
Inserting this relation to Eq. (22) leads to the same form as Eq. (15).

2.3. Local failure analysis

In this section, some aspects of the general theory of localization of inelastic deformations are revisited.
Some of the basic principles underlying the theory follow the Hadamard�s studies on stability (Hadamard,
1903). In the deformation process of strain softening material, a bifurcation can occur in such a manner
that subsequent deformations become discontinuous across a plane of orientation n.

Let u be the displacement field in the solid. Displacement gradient exhibits a jump across the plane of
discontinuity. Maxwell�s compatibility condition indicates the jump is of the form
bj Dui;j jc ¼ ginj ¼ gminj ð24Þ

for the vector g, where m is the unit vector along g.

Therefore, the corresponding strain jump can be written as
½j Deij j� ¼
1

2
gðminj þ mjniÞ: ð25Þ
Stress–strain relations take the form as in Eq. (13). Taking the jumps leads to
bj Drij jc ¼ Cijkl½j Dekl j�: ð26Þ

From the traction continuity across the discontinuity plane, the following equations must be satisfied.
bj Dtj jc ¼ bj niDrij jc ¼ nibj Drij jc ¼ 0: ð27Þ

Using the kinematic relation (25) and with the above equations, it follows that
ðniCijklnlÞmk ¼ AjkðnÞmk ¼ 0: ð28Þ

This condition indicates that acoustic tensor A(n) must have zero eigenvalue for the localized mode to be
possible. It means that the direction n that satisfies
det½AðnÞ� ¼ 0 ð29Þ

is the localization direction.
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In the two-dimensional case, n can be written as
n ¼ ce1 þ se2 with c ¼ cos h and s ¼ sin h: ð30Þ

Eq. (29) can be written as
det½AðnÞ� ¼ a1c4 þ a2c3sþ a3c2s2 þ a4cs3 þ a5s4 ¼ 0: ð31Þ

The coefficients ai are appeared to contain simple arithmetic of components Cijkl. Detailed equations can be
found in the referring article (Ortiz et al., 1987).

Dividing Eq. (31) by positive number cos4h, it follows that
f ðxÞ ¼ a5x4 þ a4x3 þ a3x2 þ a2xþ a1 ¼ 0: ð32Þ

The polynomial f(x) is positive everywhere prior to localization and has zero value at the onset of locali-
zation. Therefore, the localization can be possible at the minima of f(x). These occur at the roots of the
cubic polynomial f 0(x), which can be computed in the closed form by means of Cardan�s formulae.
3. Convexification of incremental stress potential

3.1. Convexity conditions

Applications of standard finite element methods or meshfree methods to the simulation of shear bands in
strain-softening elastoplastic solids yield mesh-dependent results. The reason is known to be the loss of
ellipticity of the boundary value problem.

Consequently, an enormous amount of research has been conducted including regularization effects.
Representatives of the research are viscoplastic regularization, nonlocal regularization, gradient regulariza-
tion, and coupled stress regularization: see, for example, Needleman (1988), Bazant and Lin (1988),
Muhlhaus and Aifantis (1991) and Muhlhaus and Vardoulaks (1987). Miehe and Lambrecht (2003)
proposed a regularization method through the convexification of non-convex potential. The convexity of
incremental stress potential is strongly related with material stability.

Firstly, we can consider quasi-convexity of incremental stress potential W which is said to be quasi-con-
vex at e if the condition
1

j D j

Z
V
W ðeþ sym½rw�ÞdV P W ðeÞ ð33Þ
holds for $w such that w = 0 on oD. Here, D is an arbitrarily chosen part of the domain. This condition
states that for all fluctuations w on D, e provides an absolute minimizer of the incremental stress potential in
D. This weak convexity condition was introduced by Morrey (1952). Quasi-convexity ensures the first term
in the right hand side of incremental potential energy in Eq. (20) �VW(e)dV to be sequentially weakly lower
semi-continuous. Quasi-convexity is the key property for the existence of sufficiently regular minimizer of
the variational problem (22). Further details of the existence theorem can be found in references (Ball, 1977;
Ciarlet, 1988).

The quasi-convexity condition based on an integral condition is hard to apply in practice. Therefore, we
can consider the slightly weaker condition of rank-one convexity.W is said to be rank-one convex at e if the
condition
nW ðeþÞ þ ð1� nÞW ðe�Þ P W ðeÞ ð34Þ
holds for the laminate strains e+ and e�, which satisfy the conditions
e ¼ neþ þ ð1� nÞe� and rank½eþ � e�� 6 1 ð35Þ
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in terms of the scalar n 2 [0,1]. The difference of the two laminate strains can be written in the form
sym[m � n] because the rank of the difference is less than one. Here, m and n are any vectors. The Taylor
series expansion of Eq. (34) provides the infinitesimal rank-one convexity condition
ðm� nÞ : o2eeW ðeÞ : ðm� nÞ P 0; ð36Þ

where o2eeW ðeÞ is the tangent modulus identical to C used in Eq. (14). Applying the minor symmetry of tan-
gent modulus, Eq. (36) can be written as
m � ðAðnÞ � mÞ P 0; ð37Þ

where A(n) is the acoustic tensor used in Eq. (28). This inequality indicates that A(n) has to have positive
eigenvalues for the rank-one convex incremental stress potential. In the failure case of this convexity con-
dition, A(n) has an eigenvalue of zero. This is the same condition as the local failure condition in Section
2.3.

3.2. Convexifications

The non-convex variational problem can be relaxed by using the convexified incremental stress potential.
Convexification of W can be done by constructing its convex envelop WR. A rank-one convex envelope is
defined by the minimization problem
W RðeÞ ¼ inf
ni;ei

XN
i¼1

niW ðeiÞ
( )

ð38Þ
with
 XN
i¼1

ni ¼ 1; e ¼
XN
i¼1

niei; and rankbei � ejc 6 1 i; j ¼ 1; 2; . . . ;N : ð39Þ
Here, N is the number of phases, and in the ideal case, N is infinity. To represent a more systematic form,
the following approximate convexification is possible.
W R0
ðeÞ ¼ W ðeÞ; ð40Þ

W Rk ðeÞ ¼ inf
n� ;e�

fnþW Rk�1
ðeþÞ þ n�W Rk�1

ðe�Þg k ¼ 1; 2; . . . : ð41Þ
After an infinite number of steps, the exact rank-one convexified potential is obtained.
W RðeÞ ¼ lim
k!1

W Rk ðeÞ: ð42Þ
As an approximation of rank-one convexification, level-1 approximation can be used:
W R1
ðeÞ ¼ inf

n;e�
fnW ðeþÞ þ ð1� nÞW ðe�Þg ð43Þ
with
e ¼ neþ þ ð1� nÞe�: ð44Þ
The difference of two laminate strains can be written as a symmetric part of the tensor product of any two
vectors.
eþ � e� ¼ d sym½m� n�; ð45Þ

where m and n are vectors and d indicates magnitude.



J.-H. Yeon, S.-K. Youn / International Journal of Solids and Structures 42 (2005) 4030–4057 4037
By using Eqs. (44) and (45), the two laminate strains can be represented as
eþ ¼ eþ dð1� nÞsym½m� n�; ð46Þ

e� ¼ e� dn sym½m� n�: ð47Þ

For the best approximation of rank-one convexification using level-1, we should set m and n as the vectors
in Eq. (24).
m ¼ ½ cos hc sin hc �; n ¼ ½� sin hc cos hc �: ð48Þ
The angle hc is determined by the local failure analysis and scalar n is a given value. The variation of relaxed
incremental stress potential is written as
dW Ra
1
ðeÞ ¼ dDe : ðrþ C : DeÞ þ dDd : ðnð1� nÞsym½m� n� : C : sym½m� n�ÞDd: ð49Þ
The first term is the same as the conventional term in Eq. (23), and the second term plays a relaxation role.
As a viewpoint of enrichment, strain increment can be written as
De ¼ D�eþ Dê: ð50Þ

Here, D�e indicates conventional term and Dê enriched term. The following approximation can represent
convexification effects.
Dê ¼ D~d sym½m� n�; ð51Þ

where D~d indicates any scalar that represents the magnitude of the enriched term.

These convexification can be interpreted as micro-structure development, as in Fig. 1. Here, hc is the crit-
ical angle calculated through local failure analysis, Dd the intensity of the micro-shearing, and d the given a
priori length scale.

Conversely, we can obtain the convexification effect by embedding the displacement of micro-structure
to the conventional displacement approximation. A fine scale displacement field can be approximated as the
displacement of a micro-structure.

A displacement field is divided into three parts: (1), (2), and (3), as in Fig. 1. In each part, x and y com-
ponents of displacement can be written as follows:
Dû1 ¼
Dd=2 cos hc at ð1Þ
Dd=dð� sin hc cos hcxþ cos2hcyÞ at ð2Þ
�Dd=2 cos hc at ð3Þ;

8><>: ð52Þ
Fig. 1. Micro-structure development of convexification effect.
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Dû2 ¼
Dd=2 sin hc at ð1Þ
Dd=dð�sin2hcxþ sin hc cos hcyÞ at ð2Þ
�Dd=2 sin hc at ð3Þ:

8><>: ð53Þ
By differentiating the displacement field in region (2), we can calculate the strain field.
Dê11 ¼ Dd=dð� sin hc cos hcÞ; ð54Þ

Dê22 ¼ Dd=dðsin hc cos hcÞ; ð55Þ

Dê12 ¼ Dd=2dðcos2hc � sin2hcÞ: ð56Þ

We can certify that the strain fields are compatible with relaxed strain as in Eq. (51). These displacement
fields are to be embedded to approximate fine scale field in Section 4.2.
4. Variational multiscale formulation

4.1. Scale decomposition

The increment of displacement can be written as follows:
Du ¼ D�uþ Dû ¼ D�uþ CDû; ð57Þ

where D�u and Dû are the coarse and fine scale parts of displacement increment, respectively, and C is the
fine scale switch that notifies nodes that fine scale enrichments are needed. In the fine scale region, C has a
value of 1 and has zero value in the other region. We can define the trial function spaces of each scale as
U ¼ fv j v 2 H 1ðV Þ; v ¼ Dgðnþ1Þ at Sug; D�u 2 U ; ð58Þ

bU ¼ fv j v 2 H 1ðV Þ; v ¼ 0 at Sug; Dû 2 bU ; ð59Þ

U ¼ U � bU : ð60Þ

Test function can also be written in the decomposed form as follows:
w ¼ �wþ Cŵ; ð61Þ

where �w and ŵ are the coarse and fine scale parts, respectively. We can define test function spaces of each
scale as follows:
V ¼ fw j w 2 H 1ðV Þ;w ¼ 0 at Sug; �w 2 V ; ð62Þ

bV ¼ fw j w 2 H 1ðV Þ;w ¼ 0 at Sug; ŵ 2 bV ; ð63Þ

V ¼ V � bV : ð64Þ

Since the test function is arbitrary for each function spaces, a weak form (15) can be decomposed into
coarse scale part and fine scale part as follows:
Z

V

o�wj

oxi
CijklðD�ekl þ CDêklÞdV ¼ �

Z
V

o�wj

oxi
rðn;iÞ
ij dV þ

Z
S
�wjt

ðnþ1Þ
j dS þ

Z
V
�wjqb

ðnþ1Þ
j dV ; ð65Þ

C
Z
V

oŵj

oxi
CijklðD�ekl þ CDêklÞdV ¼ �C

Z
V

oŵj

oxi
rðn;iÞ
ij dV þ C

Z
S
ŵjt

ðnþ1Þ
j dS þ C

Z
V
ŵjqb

ðnþ1Þ
j dV : ð66Þ
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Superscripts on the strain components are omitted for the convenience. The coarse scale problem (65) and
the fine scale problem (66) can be arranged as follows:
Z

V

o�wj

oxi
CijklD�ekl dV ¼ �

Z
V

o�wj

oxi
rðn;iÞ
ij dV þ

Z
S
�wjt

ðnþ1Þ
j dS þ

Z
V
�wjqb

ðnþ1Þ
j dV

� C
Z
V

o�wj

oxi
CijklDêkl dV ; ð67Þ

C
Z
V

oŵj

oxi
CijklDêkl dV ¼ �C

Z
V

oŵj

oxi
rðn;iÞ
ij dV þ C

Z
S
ŵjt

ðnþ1Þ
j dS þ C

Z
V
ŵjqb

ðnþ1Þ
j dV

� C
Z
V

oŵj

oxi
CijklD�ekl dV : ð68Þ
In the coarse scale problem (67), we can see that the coarse scale variable appears only on the left-hand side,
and fine scale variable only in the right-hand side. For the fine scale problem (68), fine scale variable ap-
pears only on the left-hand side. Notice that the fine scale problem is defined only in the fine scale region.

In the variational multiscale method proposed by Hughes (1995), the fine scale problem is solved first by
an analytic approach, and the results are used to construct the coarse scale problem. By solving the coarse
scale problem numerically, multiscale results are obtained. The solution procedure is appropriate for the
problem whose analytic solution of fine scale problem is available. In the analysis of the elastoplastic prob-
lem, the analytic solution of the fine scale problem is hard to obtain. In this work, we adopted iterative
solution procedures by solving the coarse and fine scale problems iteratively. A more detail explanation will
be given in Section 4.3.

Remark 1. Cis the fine scale switch that notifies nodes that fine scale enrichments are needed. Therefore, it
can be considered as a constant and the following property is held:
Z

V
C

X
all nodes

ð�ÞdV ¼ C
Z
V

X
all nodes

ð�ÞdV : ð69Þ
4.2. Numerical implementations

4.2.1. Moving least-squares approximation

In the meshfree approximation, meshes or elements are not necessary, and only nodes are used for
approximation. Meshfree approximation has also reproducing properties. It can reproduce any kind of
functions exactly if the bases of the meshfree approximation contain that functions. For these reasons,
in the meshfree approximation, adaptivity is easy to implement: h-type adaptivity can be implemented
by including nodes, and p-type adaptivity by increasing the basis function.

The moving least-squares method (Lancaster and Salkauskas, 1981) is the most widely used approxima-
tion schemes in meshfree methods. Also, in the present work, the MLS approximation will be employed. In
the following, the construction of the MLS shape functions is briefly reviewed with their properties. Let X be
an open domain of Rd, d = 1, 2, or 3. Suppose that a continuous function u : X ! R is to be approximated
and that its values uJ at the nodal points xJ 2 X, J = 1, 2, . . . ,N, are given. A global approximant uh of u is
constructed by first forming, at each point x 2 X, a local approximant Lxu, defined in terms of some basis
fpig

n
i¼1; n 6 N , and a local L2-norm. It is assumed that the basis satisfies the following properties:

(i) p1 = 1,
(ii) pi2Cr(X), i = 1,2, . . . ,n,
(iii) fpig

n
i¼1 is linearly independent over some set of n of the given N nodal points xI 2 X.
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The linear basis, pT = [1,x,y], is used throughout the present work.
The local approximant, at each point x 2 X, is defined as
Lxu ¼
Xn

i¼1

aiðxÞpi: ð70Þ
The coefficients ai(x) are chosen so that Lxu approximates the given function u in a weighted least-squares
sense. This yields the following quadratic form:
I ¼
XN
J¼1

wJ ðxÞ½uðxJ Þ � ðLxuÞðxJ Þ�2 ¼
XN
J¼1

wJ ðxÞ uJ �
Xn

i¼1

aiðxÞpiðxJ Þ
" #2

; ð71Þ
where wJ(x), J = 1,2, . . . ,N, are non-negative window functions associated with the nodal point xJ. In the
present work, the following quartic spline window function is used:
wJ ðxÞ ¼
1� 6r2 þ 8r3 � 3r4 if r ¼ kx� xJk=hJ 6 1;

0 if r ¼ kx� xJk=hJ > 1:

�
ð72Þ
where hJ is the influence radius of the nodal point xJ. It can be determined by the product of nodal spacing
d and dilatation parameter aJ.

Eq. (71) can be rewritten in the matrix form
I ¼ ðu� PaðxÞÞTWðxÞðu� PaðxÞÞ; ð73Þ

where
uT ¼ ½u1; u2; . . . ; uN �; ð74Þ

P ¼

p1ðx1Þ p2ðx1Þ � � � pnðx1Þ
p1ðx2Þ p2ðx2Þ � � � p1ðx1Þ

..

. ..
. . .

. ..
.

p1ðxN Þ p2ðxN Þ � � � pnðxN Þ

266664
377775; ð75Þ

aTðxÞ ¼ ½a1ðxÞ; a2ðxÞ; . . . ; anðxÞ�; ð76Þ

WðxÞ ¼

w1ðxÞ 0 � � � 0

0 w2ðxÞ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � wN ðxÞ

266664
377775: ð77Þ
To obtain the coefficients a(x), the quadratic form I is minimized:
oI
oa

¼ AðxÞaðxÞ � BðxÞu ¼ 0; ð78Þ
where
AðxÞ ¼ PTWðxÞP; ð79Þ

BðxÞ ¼ PTWðxÞ: ð80Þ
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Thus, the coefficients a(x) are given in the following form:
aðxÞ ¼ AðxÞ�1
BðxÞu: ð81Þ
Using the local approximant Lxu of u, the global approximation uh is defined at each point x 2 X as follows:
uhðxÞ ¼ ðLxuÞðxÞ ¼
Xn

i¼1

aiðxÞpiðxÞ ¼ pðxÞTaðxÞ; ð82Þ
where
pTðxÞ ¼ ½p1ðxÞ; p2ðxÞ; . . . ; pnðxÞ�: ð83Þ
Fig. 2. Shape functions.

Fig. 3. Pure shear problem.
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Using Eq. (81), Eq. (82) can then be expressed as follows:
uhðxÞ ¼
XN
J¼1

UJ ðxÞuJ ; ð84Þ
Fig. 4. The distributions of effective plastic strain (meshfree analysis, a = 1.2).



Fig. 5. The distributions of effective plastic strain (meshfree analysis, a = 2.4).
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where UJ(x) are the MLS meshfree shape functions, which are defined by
UJ ðxÞ ¼ pTðxÞA�1ðxÞBJ ðxÞ; ð85Þ
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where
BJ ðxÞ ¼ wJ ðxÞpðxJ Þ: ð86Þ
4.2.2. Fine-scale approximation

In this work, as a method of increasing resolution, a partition of unity based extrinsic enrichment is used.
Meshfree shape functions have the property of the partition of unity. Let X � Rn be an open set and {Xi}
open cover of X. The set of function {ui} defined on {Xi} is called the Lipschitz partition of unity if the
conditions below are satisfied:
Fig. 6. Load–displacement results of conventional meshfree analysis (a = 1.2).

Fig. 7. Load–displacement results of conventional meshfree analysis (a = 2.4).



Fig. 8. The distributions of effective plastic strain (multiscale analysis).
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(i) suppui � closure(Xi), "i,
(ii)

P
iui ¼ 1 on X,
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(iii) kuikL1 6 C1,
(iv) kruikL1 6 C1

CG
diamXi

,

where C1 and CG are constants.
Let Vi � H1(Xi\X) be given, and then the space
V 	
X
i

uiV i ¼
X
i

uivi j vi 2 V i

( )
ð87Þ
is called PUM space. The spaces Vi are referred as the local approximation spaces.
An existing theorem (Babuska and Melenk, 1997) shows that if local approximation spaces have a con-

vergent approximation property of a given function on Xi, then PUM space also has a convergent approx-
imation property on X.

In the context of above theorem, the approximation form below is available:
uhðxÞ ¼
X
J

UJ ðxÞ uJ þ
Xm
i¼1

biJqiðxÞ
" #

; ð88Þ
where qi(x) are local enriched function and biJ the coefficients.
As described in Section 3.2, in the localized region, displacement has to be represented as in Eqs. (52)

and (53). In these equations, x and y components of displacement are just the scalar multiplication of a
function fJ(x) given by
fJ ðxÞ ¼
1=2 at gJðxÞ > d=2;

1=dð� sin hcðx� xJ Þ þ cos hcðy � yJ ÞÞ; at j gJ ðxÞ j6 d=2;

�1=2 at gJðxÞ < �d=2;

8><>: ð89Þ
where
gJ ðxÞ ¼ ð� sin hcðx� xJ Þ þ cos hcðy � yJ ÞÞ: ð90Þ
Fig. 9. Load–displacement results of conventional multiscale analysis.
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These displacement fields should be embedded to represent the convexification effect. Therefore, as a local
enrichment function around node J, fJ(x) is adopted.

Consequently, the following approximation form is possible.
uhðxÞ ¼
X
J

UJ ðxÞ�uJ þ C
X
J

UJ ðxÞfJ ðxÞûJ ¼
X
J

UJ ðxÞ�uJ þ C
X
J

ÛJ ðxÞûJ : ð91Þ
The first and second term represents coarse and fine scale approximation respectively, and C indicates the
fine scale switch.

For the two-dimensional case, original meshfree shape function (coarse scale shape function UJ ðxÞ) and
extrinsic enriched shape function for hc = �30� (fine scale shape function ÛJðxÞ) are plotted in Fig. 2.
Enriched shape function have sharp gradient in the localization region with width d.
Fig. 10. x-Displacements along the line x = 0.5 mm for different nodal distributions.
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4.3. Solution procedures

Using the approximation of (91), the coarse scale problem can be written in the matrix form as follows:
½Kðn;iÞ
1 �fD�uðn;iþ1Þg ¼ fF ðn;iÞ

1 g þ fF 2ðDûðn;iþ1ÞÞg; ð92Þ
Fig. 11. The compression problem.

Fig. 12. The distributions of effective plastic strain (meshfree analysis, a = 1.2).
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where matrix bKðn;iÞ
1 c is obtained from left-hand side of Eq. (67), vector fF 2ðDûðn;iþ1ÞÞg from the right-hand

side terms that contain Dûðn;iþ1Þ, and fF ðn;iÞ
1 g from the rest.

The fine scale problem can also be written in the matrix form as follows:
bKðn;iÞ
2 cfDûðn;iþ1Þg ¼ fF ðn;iÞ

3 g þ fF 4ðD�uðn;iþ1ÞÞg; ð93Þ
Fig. 13. The distributions of effective plastic strain (meshfree analysis, a = 2.4).

Fig. 14. Load–displacement results of conventional meshfree analysis (a = 2.4).
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where matrix bKðn;iÞ
2 c is obtained from left-hand side of Eq. (68), vector fF 4ðD�uðn;iþ1ÞÞg from the right-hand

side terms that contains D�uðn;iþ1Þ, and fF ðn;iÞ
3 g from the rest. As described in Section 2, the elastoplastic

deformation problem described in this work is a non-linear problem, meaning that the problem should
be solved iteratively. In this formulation, the coarse scale problem (67) and the fine scale problem (68)
are solved iteratively. The solution procedures are summarized as follows.

(1) Solve coarse scale problem by replacing the fine scale variable Dûðn;iþ1Þ in the right-hand side into Dûðn;iÞ.
Determine D�uðn;iþ1Þ.
bKðn;iÞ
1 cfD�uðn;iþ1Þg ¼ fF ðn;iÞ

1 g þ fF 2ðDûðn;iÞÞg ð94Þ

(2) Solve the fine scale problem and determine Dûðn;iþ1Þ.
bKðn;iÞ
2 cfDûðn;iþ1Þg ¼ fF ðn;iÞ

3 g þ fF 4ðD�uðn;iþ1ÞÞg ð95Þ

(3) Determine total displacement increment and update stress.
Duðn;iþ1Þ ¼ D�uðn;iþ1Þ þ CDûðn;iþ1Þ ð96Þ

(4) Iterate these procedures until convergence is achieved. (goto (1))
(5) Increase the loading step and find the fine scale region and fine scale approximation function from local

failure analysis.
(6) Goto step (1) until the last loading step is reached.
Fig. 15. The distributions of effective plastic strain (multiscale analysis).
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5. Numerical examples

In this section, numerical simulations of some problems are presented using the multiscale formulation
developed in the previous sections. The constitutive relation of the infinitesimal plastic theory with the J2
flow rule is adopted. Three benchmark problems are to calculate the developments of the shear bands in a
pure shear test, a compression test, and an indentation test under plane strain conditions. For each of them,
the results are compared with those of conventional meshfree methods to show the validity of the proposed
method.

5.1. Pure shear problem

In the first example, the localization of a specimen subjected to pure shear is investigated. The system
is depicted in Fig. 3. A block with a unit length subjected to a shear stress s is considered. As a plasticity
Fig. 17. Meshfree (a = 2.4) results of y-displacement along line AB.

Fig. 16. Load–displacement results of conventional multiscale analysis.
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model, the J2 flow rule is used. Young�s modulus is set to E = 205.7 GPa, Poisson�s ration m = 0.2857, the
initial yield stress Y0 = 500 MPa, and the softening modulus h = �1306 MPa. Localization of the homoge-
neous state is triggered by reducing the yield stress of the middle horizontal row. The given a priori length
scale d is set to 62.5 lm.

The domain is discretized with 9 · 9, 17 · 17, and 33 · 33 uniform nodal distributions. Firstly, this prob-
lem is solved using the conventional meshfree method with small and large supports. Dilatation parameters
a = 1.2 and 2.4 are used for the small and large supports, respectively. The deformed shapes and the dis-
tributions of effective plastic strain when the imposed top surface displacement is u = 0.012 mm are de-
picted in Figs. 4 and 5.

As denser nodal distribution is used, displacement changes sharply near the middle horizontal line, and
the plastic region is concentrated on the middle horizontal line. In the case of a large support, the effective
plastic strain becomes smoother near the middle horizontal line. Figs. 6 and 7 depict the load–displacement
curves for different nodal distributions. The results are different obviously for different nodal distributions.

Subsequently, the pure shear problem is solved using the proposed multiscale method. In the construc-
tion of multiscale meshfree shape function, small support (a = 1.2) is used. The deformed shapes and the
distributions of effective plastic strain are almost the same irrespective of nodal distributions (Fig. 8). Load–
Fig. 18. Multiscale results of y-displacement along line AB.

Fig. 19. Indentation test problem.
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displacement curves are depicted in Fig. 9. The results are somewhat different, but almost similar, irrespec-
tive of nodal distributions.

Fig. 10 depicts x-displacement along the middle vertical line x = 0.5 mm. Conventional meshfree results
show mesh dependency. However, multiscale results show insensitivity to nodal distributions.
5.2. Compression problem

As a second example, the following compression problem is considered. The geometry and boundary
conditions are shown in Fig. 11. The material parameters are the same as in the previous example. The gi-
ven a priori length scale d is set to 1.5 · 10�2 m in this example. The weakened region is set on the left bot-
tom corner to initiate softening region by reducing the initial yield stress.
Fig. 20. Distributions of effective plastic strain.



4054 J.-H. Yeon, S.-K. Youn / International Journal of Solids and Structures 42 (2005) 4030–4057
Uniform distribution of 7 · 13, 13 · 25, and 19 · 37 nodes are used. This problem is solved by the pro-
posed multiscale method, and the results are compared with those of conventional meshfree methods of
small (a = 1.2) and large (a = 2.4) supports.

For the case of u = 0.6 mm, the resulting distributions of effective plastic strain for the conventional
meshfree methods are shown in Figs. 12 and 13. In the case of small support, the plastic regions are spread
over the broad area and localized shear bands are not captured. In the case of large support, the plastic
region is banded and propagates to a 45� direction from the weakened region. However, the width of
the bands varies with nodal distributions. In the denser nodal distributions, thinner bands appear. The
load–displacement curves for the meshfree methods with large support are shown in Fig. 14. The results
are different for different nodal distributions. In the denser nodal distributions, softer responses are
observed.

The resulting distributions of effective plastic strain for the multiscale methods are shown in Fig. 15. The
plastic region is banded and the width of shear bands almost invariant. The load–displacement curves are
shown in Fig. 16. The results are almost invariant for nodal distributions.

The displacement component along line AB in Fig. 11 is shown in Figs. 17 and 18. In the case of the
meshfree method with large support, displacements depend on nodal distribution in some degree. However,
Fig. 21. Distributions of effective plastic strain and localization angles in the case of multiscale method.



Fig. 22. Load–displacement curves of indentation problem.
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in the case of the multiscale method, displacements do not vary much with different nodal distributions,
which means that the proposed multiscale method can capture shear band with greater accuracy and yields
better results than the meshfree method with large support.

5.3. Indentation problem

The last example is concerned with an analysis of an indentation test under plane strain conditions. The
system is depicted in Fig. 19. Displacements on the rigid strip are imposed and reaction forces are calcu-
lated. The material properties of the specimen are the same as those of first example except for the softening
modulus h = �131 MPa. The given a priori length scale d is set to 2 mm in this example. Due to the sym-
metry, only one half of the specimen has been analyzed with 30 · 18 and 40 · 24 uniform nodal
distributions.

For the case of imposed displacement u = 1 mm, the resulting distributions of effective plastic strain and
deformed shapes are shown in Figs. 20 and 21.

In the case of the conventional meshfree method with small support (a = 1.2), unrealistic deformation
and plastic strain distributions are observed. In the case of the meshfree method with large support
(a = 2.4) and the proposed multiscale method, a material pile-up near the rigid strip and curved shear band
are observed. Meshfree method with large support has the effect of using high order shape function. There-
fore, a regularization effect appears. In the results of the multiscale method, sharp shear bands are observed
and the localization angles used in the computation of enrichment functions are in agreement with shear
band directions. Fig. 22 shows the load–displacement curves for different nodal distributions. Multiscale
results are less stiff and mesh-insensitive than those of the meshfree method with large support.
6. Conclusions

A meshfree multiscale method is presented for efficient analysis of elastoplastic solids. Through the scale
decomposition based on variational principles, the problem is decomposed into fine scale and coarse scale
problems. The fine scale region is detected from the local failure analysis of an acoustic tensor to indicate
region in which deformation changes abruptly. Each scale variable is approximated using a meshfree
method associated with a partition of unity. In particular, fine scale approximations are designed to
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appropriately represent local behavior using the localization angle. Moreover, regularization effect through
convexification of non-convex potential is embedded to represent fine scale behavior. The decomposed
problems are solved iteratively. The iteration procedure is indispensable for the analysis of non-linear prob-
lems like the elastoplastic deformation problem.

The proposed method is applied to pure shear, compression and indentation problems. Straight and
curved shear bands can be effectively captured with the proposed method. The width of the localized region
and load–displacement curves are invariant irrespective of nodal distributions, while conventional meshfree
results show mesh dependency.

The proposed meshfree multiscale method shows insensitive results to nodal distribution and provides a
natural approach to the non-linear problem. This method is useful to the analysis of softening elastoplastic
solids. Naturally, use of this method could also be extended to other types of local phenomenon problems
not discussed in this paper.
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